\(\int \frac {x^{13/2}}{(a+c x^4)^2} \, dx\) [746]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 308 \[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=-\frac {x^{7/2}}{4 c \left (a+c x^4\right )}-\frac {7 \arctan \left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \arctan \left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \arctan \left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}-\frac {7 \text {arctanh}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}+\frac {7 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}}-\frac {7 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}} \]

[Out]

-1/4*x^(7/2)/c/(c*x^4+a)+7/16*arctan(c^(1/8)*x^(1/2)/(-a)^(1/8))/(-a)^(1/8)/c^(15/8)-7/16*arctanh(c^(1/8)*x^(1
/2)/(-a)^(1/8))/(-a)^(1/8)/c^(15/8)+7/32*arctan(-1+c^(1/8)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(1/8)/c^(15/8)*2^(
1/2)+7/32*arctan(1+c^(1/8)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(1/8)/c^(15/8)*2^(1/2)+7/64*ln((-a)^(1/4)+c^(1/4)*
x-(-a)^(1/8)*c^(1/8)*2^(1/2)*x^(1/2))/(-a)^(1/8)/c^(15/8)*2^(1/2)-7/64*ln((-a)^(1/4)+c^(1/4)*x+(-a)^(1/8)*c^(1
/8)*2^(1/2)*x^(1/2))/(-a)^(1/8)/c^(15/8)*2^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.800, Rules used = {294, 335, 307, 303, 1176, 631, 210, 1179, 642, 304, 211, 214} \[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=-\frac {7 \arctan \left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \arctan \left (\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}+1\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \arctan \left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}-\frac {7 \text {arctanh}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}+\frac {7 \log \left (-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}}-\frac {7 \log \left (\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}}-\frac {x^{7/2}}{4 c \left (a+c x^4\right )} \]

[In]

Int[x^(13/2)/(a + c*x^4)^2,x]

[Out]

-1/4*x^(7/2)/(c*(a + c*x^4)) - (7*ArcTan[1 - (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(16*Sqrt[2]*(-a)^(1/8)*c^(
15/8)) + (7*ArcTan[1 + (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(16*Sqrt[2]*(-a)^(1/8)*c^(15/8)) + (7*ArcTan[(c^
(1/8)*Sqrt[x])/(-a)^(1/8)])/(16*(-a)^(1/8)*c^(15/8)) - (7*ArcTanh[(c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(16*(-a)^(1/8
)*c^(15/8)) + (7*Log[(-a)^(1/4) - Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x])/(32*Sqrt[2]*(-a)^(1/8)*c^(1
5/8)) - (7*Log[(-a)^(1/4) + Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x])/(32*Sqrt[2]*(-a)^(1/8)*c^(15/8))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 307

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b
, 2]]}, Dist[s/(2*b), Int[x^(m - n/2)/(r + s*x^(n/2)), x], x] - Dist[s/(2*b), Int[x^(m - n/2)/(r - s*x^(n/2)),
 x], x]] /; FreeQ[{a, b}, x] && IGtQ[n/4, 0] && IGtQ[m, 0] && LeQ[n/2, m] && LtQ[m, n] &&  !GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps \begin{align*} \text {integral}& = -\frac {x^{7/2}}{4 c \left (a+c x^4\right )}+\frac {7 \int \frac {x^{5/2}}{a+c x^4} \, dx}{8 c} \\ & = -\frac {x^{7/2}}{4 c \left (a+c x^4\right )}+\frac {7 \text {Subst}\left (\int \frac {x^6}{a+c x^8} \, dx,x,\sqrt {x}\right )}{4 c} \\ & = -\frac {x^{7/2}}{4 c \left (a+c x^4\right )}-\frac {7 \text {Subst}\left (\int \frac {x^2}{\sqrt {-a}-\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{8 c^{3/2}}+\frac {7 \text {Subst}\left (\int \frac {x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{8 c^{3/2}} \\ & = -\frac {x^{7/2}}{4 c \left (a+c x^4\right )}-\frac {7 \text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}-\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{16 c^{7/4}}+\frac {7 \text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}+\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{16 c^{7/4}}-\frac {7 \text {Subst}\left (\int \frac {\sqrt [4]{-a}-\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{16 c^{7/4}}+\frac {7 \text {Subst}\left (\int \frac {\sqrt [4]{-a}+\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{16 c^{7/4}} \\ & = -\frac {x^{7/2}}{4 c \left (a+c x^4\right )}+\frac {7 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}-\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}+\frac {7 \text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{32 c^2}+\frac {7 \text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{32 c^2}+\frac {7 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}+2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}-2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}} \\ & = -\frac {x^{7/2}}{4 c \left (a+c x^4\right )}+\frac {7 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}-\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}+\frac {7 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}}-\frac {7 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}}-\frac {7 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}} \\ & = -\frac {x^{7/2}}{4 c \left (a+c x^4\right )}-\frac {7 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} \sqrt [8]{-a} c^{15/8}}+\frac {7 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}-\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt [8]{-a} c^{15/8}}+\frac {7 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}}-\frac {7 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} \sqrt [8]{-a} c^{15/8}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 277, normalized size of antiderivative = 0.90 \[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=\frac {-\frac {8 c^{7/8} x^{7/2}}{a+c x^4}-\frac {7 \sqrt {2+\sqrt {2}} \arctan \left (\frac {\sqrt {1-\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{\sqrt [8]{a}}-\frac {7 \sqrt {2-\sqrt {2}} \arctan \left (\frac {\sqrt {1+\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{\sqrt [8]{a}}-\frac {7 \sqrt {2+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2+\sqrt {2}} \sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{\sqrt [8]{a}}-\frac {7 \sqrt {2-\sqrt {2}} \text {arctanh}\left (\frac {\sqrt [8]{a} \sqrt [8]{c} \sqrt {-\left (\left (-2+\sqrt {2}\right ) x\right )}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{\sqrt [8]{a}}}{32 c^{15/8}} \]

[In]

Integrate[x^(13/2)/(a + c*x^4)^2,x]

[Out]

((-8*c^(7/8)*x^(7/2))/(a + c*x^4) - (7*Sqrt[2 + Sqrt[2]]*ArcTan[(Sqrt[1 - 1/Sqrt[2]]*(a^(1/4) - c^(1/4)*x))/(a
^(1/8)*c^(1/8)*Sqrt[x])])/a^(1/8) - (7*Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[1 + 1/Sqrt[2]]*(a^(1/4) - c^(1/4)*x))/(a
^(1/8)*c^(1/8)*Sqrt[x])])/a^(1/8) - (7*Sqrt[2 + Sqrt[2]]*ArcTanh[(Sqrt[2 + Sqrt[2]]*a^(1/8)*c^(1/8)*Sqrt[x])/(
a^(1/4) + c^(1/4)*x)])/a^(1/8) - (7*Sqrt[2 - Sqrt[2]]*ArcTanh[(a^(1/8)*c^(1/8)*Sqrt[-((-2 + Sqrt[2])*x)])/(a^(
1/4) + c^(1/4)*x)])/a^(1/8))/(32*c^(15/8))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 4.05 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.15

method result size
derivativedivides \(-\frac {x^{\frac {7}{2}}}{4 c \left (x^{4} c +a \right )}+\frac {7 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}}\right )}{32 c^{2}}\) \(47\)
default \(-\frac {x^{\frac {7}{2}}}{4 c \left (x^{4} c +a \right )}+\frac {7 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}}\right )}{32 c^{2}}\) \(47\)

[In]

int(x^(13/2)/(c*x^4+a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/4*x^(7/2)/c/(c*x^4+a)+7/32/c^2*sum(1/_R*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.32 \[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=-\frac {16 \, x^{\frac {7}{2}} + 7 \, \sqrt {2} {\left (\left (i - 1\right ) \, c^{2} x^{4} + \left (i - 1\right ) \, a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (\left (\frac {1}{2} i + \frac {1}{2}\right ) \, \sqrt {2} a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) + 7 \, \sqrt {2} {\left (-\left (i + 1\right ) \, c^{2} x^{4} - \left (i + 1\right ) \, a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (-\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) + 7 \, \sqrt {2} {\left (\left (i + 1\right ) \, c^{2} x^{4} + \left (i + 1\right ) \, a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) + 7 \, \sqrt {2} {\left (-\left (i - 1\right ) \, c^{2} x^{4} - \left (i - 1\right ) \, a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (-\left (\frac {1}{2} i + \frac {1}{2}\right ) \, \sqrt {2} a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) - 14 \, {\left (c^{2} x^{4} + a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) + 14 \, {\left (i \, c^{2} x^{4} + i \, a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (i \, a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) + 14 \, {\left (-i \, c^{2} x^{4} - i \, a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (-i \, a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) + 14 \, {\left (c^{2} x^{4} + a c\right )} \left (-\frac {1}{a c^{15}}\right )^{\frac {1}{8}} \log \left (-a c^{13} \left (-\frac {1}{a c^{15}}\right )^{\frac {7}{8}} + \sqrt {x}\right )}{64 \, {\left (c^{2} x^{4} + a c\right )}} \]

[In]

integrate(x^(13/2)/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

-1/64*(16*x^(7/2) + 7*sqrt(2)*((I - 1)*c^2*x^4 + (I - 1)*a*c)*(-1/(a*c^15))^(1/8)*log((1/2*I + 1/2)*sqrt(2)*a*
c^13*(-1/(a*c^15))^(7/8) + sqrt(x)) + 7*sqrt(2)*(-(I + 1)*c^2*x^4 - (I + 1)*a*c)*(-1/(a*c^15))^(1/8)*log(-(1/2
*I - 1/2)*sqrt(2)*a*c^13*(-1/(a*c^15))^(7/8) + sqrt(x)) + 7*sqrt(2)*((I + 1)*c^2*x^4 + (I + 1)*a*c)*(-1/(a*c^1
5))^(1/8)*log((1/2*I - 1/2)*sqrt(2)*a*c^13*(-1/(a*c^15))^(7/8) + sqrt(x)) + 7*sqrt(2)*(-(I - 1)*c^2*x^4 - (I -
 1)*a*c)*(-1/(a*c^15))^(1/8)*log(-(1/2*I + 1/2)*sqrt(2)*a*c^13*(-1/(a*c^15))^(7/8) + sqrt(x)) - 14*(c^2*x^4 +
a*c)*(-1/(a*c^15))^(1/8)*log(a*c^13*(-1/(a*c^15))^(7/8) + sqrt(x)) + 14*(I*c^2*x^4 + I*a*c)*(-1/(a*c^15))^(1/8
)*log(I*a*c^13*(-1/(a*c^15))^(7/8) + sqrt(x)) + 14*(-I*c^2*x^4 - I*a*c)*(-1/(a*c^15))^(1/8)*log(-I*a*c^13*(-1/
(a*c^15))^(7/8) + sqrt(x)) + 14*(c^2*x^4 + a*c)*(-1/(a*c^15))^(1/8)*log(-a*c^13*(-1/(a*c^15))^(7/8) + sqrt(x))
)/(c^2*x^4 + a*c)

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(x**(13/2)/(c*x**4+a)**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=\int { \frac {x^{\frac {13}{2}}}{{\left (c x^{4} + a\right )}^{2}} \,d x } \]

[In]

integrate(x^(13/2)/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

-1/4*x^(7/2)/(c^2*x^4 + a*c) + 7*integrate(1/8*x^(5/2)/(c^2*x^4 + a*c), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 486 vs. \(2 (207) = 414\).

Time = 0.45 (sec) , antiderivative size = 486, normalized size of antiderivative = 1.58 \[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=-\frac {x^{\frac {7}{2}}}{4 \, {\left (c x^{4} + a\right )} c} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a c \sqrt {-2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (-\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a c \sqrt {-2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a c \sqrt {2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (-\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a c \sqrt {2 \, \sqrt {2} + 4}} - \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a c \sqrt {-2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (-\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a c \sqrt {-2 \, \sqrt {2} + 4}} - \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a c \sqrt {2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (-\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a c \sqrt {2 \, \sqrt {2} + 4}} \]

[In]

integrate(x^(13/2)/(c*x^4+a)^2,x, algorithm="giac")

[Out]

-1/4*x^(7/2)/((c*x^4 + a)*c) + 7/16*(a/c)^(7/8)*arctan((sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + 2*sqrt(x))/(sqrt(sqrt
(2) + 2)*(a/c)^(1/8)))/(a*c*sqrt(-2*sqrt(2) + 4)) + 7/16*(a/c)^(7/8)*arctan(-(sqrt(-sqrt(2) + 2)*(a/c)^(1/8) -
 2*sqrt(x))/(sqrt(sqrt(2) + 2)*(a/c)^(1/8)))/(a*c*sqrt(-2*sqrt(2) + 4)) + 7/16*(a/c)^(7/8)*arctan((sqrt(sqrt(2
) + 2)*(a/c)^(1/8) + 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a*c*sqrt(2*sqrt(2) + 4)) + 7/16*(a/c)^(7/8)
*arctan(-(sqrt(sqrt(2) + 2)*(a/c)^(1/8) - 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a*c*sqrt(2*sqrt(2) + 4
)) - 7/32*(a/c)^(7/8)*log(sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c*sqrt(-2*sqrt(2) + 4))
+ 7/32*(a/c)^(7/8)*log(-sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c*sqrt(-2*sqrt(2) + 4)) -
7/32*(a/c)^(7/8)*log(sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c*sqrt(2*sqrt(2) + 4)) + 7/3
2*(a/c)^(7/8)*log(-sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a*c*sqrt(2*sqrt(2) + 4))

Mupad [B] (verification not implemented)

Time = 5.55 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.44 \[ \int \frac {x^{13/2}}{\left (a+c x^4\right )^2} \, dx=\frac {7\,\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}}{{\left (-a\right )}^{1/8}}\right )}{16\,{\left (-a\right )}^{1/8}\,c^{15/8}}-\frac {x^{7/2}}{4\,c\,\left (c\,x^4+a\right )}+\frac {\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}\,1{}\mathrm {i}}{{\left (-a\right )}^{1/8}}\right )\,7{}\mathrm {i}}{16\,{\left (-a\right )}^{1/8}\,c^{15/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (\frac {7}{32}-\frac {7}{32}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}\,c^{15/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (\frac {7}{32}+\frac {7}{32}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}\,c^{15/8}} \]

[In]

int(x^(13/2)/(a + c*x^4)^2,x)

[Out]

(7*atan((c^(1/8)*x^(1/2))/(-a)^(1/8)))/(16*(-a)^(1/8)*c^(15/8)) - x^(7/2)/(4*c*(a + c*x^4)) + (atan((c^(1/8)*x
^(1/2)*1i)/(-a)^(1/8))*7i)/(16*(-a)^(1/8)*c^(15/8)) + (2^(1/2)*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 - 1i/2))/(-a
)^(1/8))*(7/32 - 7i/32))/((-a)^(1/8)*c^(15/8)) + (2^(1/2)*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 + 1i/2))/(-a)^(1/
8))*(7/32 + 7i/32))/((-a)^(1/8)*c^(15/8))